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Roof shell Ship's hull
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Definitions

Mechanics of Materials

Deals with

Prediction of response, life and failure of
structures and components thereof using
simplified theories.
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Definitions

L_Response

-

Measured in terms of

displacements, velocities,
strains and stresses.

Definitions

L_Response

-4

F unctions which govern
response can be grouped into:

Kinematic variables sl displacements
velocities
strains

strain rates

Kinetic variables
Material characteristics

Source variables
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Definitions

L_Response

-

F unctions which govern
response can be grouped into:

Kinematic variables

Kinetic variables messssip- stresses
internal forces
Material characteristics

Source variables

I Definitions

L_Response

-

F unctions which govern

response can be grouped into:

Kinematic variables
Kinetic variables
Material characteristics = stiffnesses

: compliances
Source variables flexibilities
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Definitions

. Response

a7

Functions which govern
response can be grouped into:

Kinematic variables mechanical,
environmental

Kinetic variables forces
(mechanical,

Material characteristics aerodynamic,

¢ thermal, optical
Source variables w4 electromag-

netic forces)
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1.2 Relations between external forces and response quantities



Classification of Structural Members

[ciccording to Spatial Extent)

Three-dimensional members
£ 0(82) = 0(23)

i)
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1.3 Classification of structural members (according to spatial extent)



Classification of Structural Members

[ciccording to Spatial Extent)
Three-dimensional members
£ 0(22) = 0(¢,)

Two-dimensional members

24 = O(L,) >> £,
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Classification of Structural Members

[ciccording to Spatial Extent)

Three-dimensional members
£ 0(22) = 0(33)

Two-dimensional members

One-dimensional members

£=0(t)<<t3 |
Sl

/N
NS
! 3 Z
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Classification of Structural Members

[ciccording to Spatial Extent)
Three-dimensional members
£ 0(22) = 0(33)

Two-dimensional members

£4=0(t,) >> 2, @

One-dimensional members

£, = 0(L,) << £,

Thin-walled beams

E3 >> Ez >> 2'1
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1.4 Relationship between mechanics of materials and other disciplines




Mechanics of
Materials and .
Simplified Elasticity
Theories and
(e.g. beams, Inelasticity
plates and
shells)

Viechanics of Materials vs.
Elaisticity and Inelasticity

Examples of problems for which mechanics
of materials assumptions are not valid

¥
= i Shallow Beams
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Mechanics of Materials vs.

Elaisticity and Inelasticity

Examples of problems for which mechanics
of materials assumptions are not valid

LI B S B N

Deep Beams

Mechzainics of Materials vs.

Elaisticity and Inelasticity

Examples of problems for which mechanics
of materials assumptions are not valid

Stresses at frame joints
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Mechanics of Materials vs.
Elaisticity and Inelasticity

Examples of problems for which mechanics
of materials assumptions are not valid

Stress concentrations

* Near discontinuities
(cutouts and sharp

,_20 (? O}—- changes)

* Near points of
application of loads
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Mechanics of Materials vs.
Elasticity and Inelasticity

Examples of problems for which mechanics
of materials assumptions are not valid

Stress concentrations

* Near discontinuities
(cutouts and sharp
changes)

* Near points of
application of loads
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Load distorts lines
located near load

Lines located away
from the load and support
remain straight

Load distorts lines
located near support

o — L —— S — e o - S S e " ——

»

Mechanics of Materials vs.

Elasticity and Inelasticity

Examples of problems for which mechanics
of materials assumptions are not valid

Stress concentrations

* Near discontinuities
(cutouts and sharp

! ! l ” changes)
Q=% o Near points of

wctonss s secnos application of loads
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1.5 Brief history of the development of mechanics of materials
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Basic Assumptions in

Mechanics of Materials

Pﬂatfrials - continuous on macroscopic
eve

Masses - reasonably large (small masses
studied in quantum mechanics)

Velocities - small compared to speed
of light

Sim _Iifyingt_assum tions usually made
on kinematic and kinetic variables and
material characteristics
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1.6 Basic assumptions in mechanics of materials




Axioms of Nature

I 1 (2K [(JJobeyed by all continuous
sLolellsF regardless of their shape
or material makeup.

 They EIEITIIEE rigorously.

* They if ever, observed
1§ T violated.

AXxioms of Nature

Kinetics

Branch of mechanics dealing with the
motions of material bodies under the
action of given forces.

Conservation of Mass
dm _
dt 0

m=fpdv
v

p = mass density (mass
per unit volume)
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1.7 Axioms of nature



Axioms of Nature

Conservation of Momentum

F = "(l v M = .g H
EF=ge(mV) , =M=t (H)
F = force vectors
M = moment vectors
v = velocity vector
H = angular momentum vector

AXxioms of Nature

Thermodynamics

Branch of physics dealing with the
conservation of energy from one form
to another.

Conservation of Energy

Entropy Production
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Planar Beams
External Loading

P,,P, positive if acting in
the positive y and z
directions

Py,P; intensity of external
loadings in the y and
z directions

—>| AZ |«—
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1.8 Planar beams and torsion of circular bars



y W Py
Z
P,
|< Az 1-|

| Planar Beams

Internal forces represent resistance to the relative
motion of two adjacent cross sections.

Normal Force, N

+ive

N positive if tensile
and negative if N N
compressive

-ive

™
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| Planar Beams

Shearing Force, Vy

positive (+ive) and
negative (-ive) as
shown

| Planar Beams

Bending Moment, My y

positive (+ive) and
negative (-ive) as
shown

-
(W) -
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dJorsion of Circular Bars

External Twisting Moments

* Right hand screw rule
used for representing
moments.

* Intensity of external
twisting moment m
is positive, if its vector
representation is in the
positive coordinate
direction

Internal Twisting Moments

positive (+ive) and
negative (-ive) as
shown

-ive
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Intermediate Articulations
[Hinges)

Intermediate Articulations
Hinges)
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Axial hinge

Shear hinge

1.9 Intermediate articulations (hinges)



Intermediate Articulations

Hinges)
Axial hinge

Shear hinge

Bending (flexural) hinge

Elementary States of Stress
and Strain

1. Axial Loading

Geometry of Deformation

! P o ol ]
* Plane cross section remains "'“"’

plane and normal to the axis ' i T
after deformation. E . ol

* Axial strain € = dw/dz which is the same at all
points of a given cross section.
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1.10 Elementary states of stress and strain



E[ementam';y States of Stress
and Strain

Elementary States of Stress
and Strain

1. Axial Loading

Static Relation - Equilibrium

LO‘dA=N

where O = normal
stress
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Elementary States of Stress
and Strain

I Flementary States of Stress
and Strain

1. Axial Loading

Constitutive Relation

C=EE
E = modulus of elasticity in tension or
compression

LE:;dA =N

If E is uniform at all points of the cross section, then

E & | dA =N
JA
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Elementary States of Stress
and Strain

1. Axial Loading

Constitutive Relation

| EcdA =N
JA
If E is uniform at all points of the cross section, then
Ec| dA =N
JA
or

Eg¢A =N

Elementary States of Stress
. and Strain

1. Axial Loading

Constitutive Relation

EgldA=N
JA
or Ec<A =N

o = N/A
dw - N
2

g =2 EA = extensional stiffness
d EA and
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Elementary States of Stress
and Strain

2. Pure and Transverse Bending

Pure bending refers to bending moment
only (no axial force, shear force, or
twisting moment)

[ ] ——— 411 ]

Elementary States of Stress
and Strain

2. Pure and Transverse Bending

Transverse bending refers to
combination of bending
moment and shearing force

T v ] —————— 4]

chl151/79
1.10.2 Pure and transverse bending



Elementary States of Stress
and Strain

2. Pure and Transverse Bending

Geometry of Deformation

* Plane cross section

before bendin S— " ——
remains planegafter -
bending and normal S
to the center line of

the beam.

* The neutral axis ‘f ‘) &
is the x-axis. = : S

Normal strain variation Bending stress variation
(profile view) (profile view)
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Shear stress distribution

Elementa:}l States of Stress
Strain

2. Pure and Transverse Bending

Geometry of Deformation

d%
= — -
dz

L )

a=ny=—yg3 sl
Z
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Elementary States of Stress
and Strain

2. Pure and Transverse Bending

Static Relation - Equilibrium

[ oyda=m,
A

Elementary States of Stress
and Strain

2. Pure and Transverse Bending

Constitutive Relation

c=Ec¢

=E
rE d%v
M,=El,k=-El,—;
M dz

X

G=_

lx
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Elementary States of Stress
and Strain

3. Torsion of Bars with Circular
Cross Section

Geometry of Deformation

* Plane parallel cross
sections remain
plane and paraliel
after deformation.

| animation

Torsion

deformed
plane

undeformed
plane
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1.10.3 Torsion of bars with circular cross section



(o0 [aln]

Elementary States of Stress
and Strain

3. Torsion of Bars with Circular
Cross Section

Geometry of Deformation

* Diameters of cross
sections and
distances between
them do not change.
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Elementary States of Stress
and Strain

3. Torsion of Bars with Circular
Cross Section

Geometry of Deformation

Shearing strain

_ do
Y—r"d—z*

| animation

I Elementary States of Stress
and Strain

3. Torsion of Bars with Circular
Cross Section

Static Relation - Equilibrium

f‘crdﬂ'\=Mt
A
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Elementary States of Stress
and Strain

3. Torsion of Bars with Circular
Cross Section

Constitutive Relation

1=Gy

do fz
M,=GI.— , [I,= ] rdA
t de (p A
Mt

| Elementaw States of Stress
and Strain

4. Relations between External
and Internal Forces

Force Equilibrium

Axial Forces

p, Az + AN =0

N+ AN

— —W

«— 72—

_—/
dN _ —
— ! pZ To—
dz

chl1 58/79

1.10.4 Relations between external and internal forces



[ Elementary States of Stress

and Strain

4. Relations between External
and Internal Forces

Force Equilibrium
Transverse Forces

py Az +Vy = (Vy + AV,) = 0

Py

vy + A‘Jy

Elementary States of Stress
and Strain

4. Relations between External
and Internal Forces

Moment Equilibrium

Py
Bending Moments VYW
< IMBAH:
M ‘

X
| Az |Vy + Avy

&)

2

vyAz+(Mx+AMx)—Mx—py =0
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Elementary States of Stress
and Strain

4. Relations between External
and Internal Forces

Moment Equilibrium

Bending Moments

Elementary States of Stress
and Strain

4. Relations between External
and Internal Forces
Moment Equilibrium

Twisting Moments

dz Id—ﬁz—rl

chl 60/79



[ Elementary States of Stress

5. Governing Equations

and

Strain

Axial Loading
S=-p|

N = EAg—"Z"

)
(;j—Z(EA%—‘g’) =_p,

Elementary States of Stress

5. Governing Equations

Pure and Transverse Bending

and

Strain

dz Y '
dM

X _v [
dz y

Py

Ml + ﬁMx

- — — —

V&- + AV?
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1.10.5 Governing equations



:

\ElPure and Transverse Bending

Elementary States of Stress

and Strain

5. Governing Equations

Vy

d°M,, (
dz

——— g — + M,
2 py :l |{—L\Z—h—

- ——— s —

M_g + ﬂMn

‘U,- + (\Vy

E|Pure and Transverse Bending

Elementary States of Stress

and Strain

5. Governing Equations

Vy

4-

d2V MI |<—L\z—n-

M){:—Elx—2 4]
dz

Py

- — — —

Ml + ﬁMx

V&- + AV?
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|

Elementary States of Stress
and Strain

5. Governing Equations

\ElPure and Transverse Bending

E3

- ——— s —

M_g + ﬂMn

‘U,- + (\Vy

Elementary States of Stress

and Strain

5. Governing Equations

Torsion
dM,
— AT
dz
do
M,=GI,6 —
t P dz

Mt + AM¢
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Elementary States of Stress

and Strain

5. Governing Equations

Torsion
:l M: m Mt + AMt
;?I |4—AZ—!~
d d
LRS- 1 -
dz dz

Sl8snanizry Siaies of

SErEss zlriel Serziln
[(SUininzry)
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Example

Basic Assumption

Kinematic

Relations Strain

Displacement
Relations

Static Relations

Constitutive Relations

Axial Pure and
Loading Transverse Bending

Torsion

Plane cross section before deformation
remains plane after deformation
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Pure and Transverse Bending

undeformed

Normal strain variation
(profile view)

V

deformed
plane

undeformed
plane
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Strain
Displacement

Relations

Axial Loading

Strain
Displacement

Relations
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Torsion

Strain
Displacement

Relations

Axial Loading

Static
Relations
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Pure and
Transverse Bending

Static
Relations

Torsmn

Static
Relations
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Axial Loading

Constitutive
Relations

Constitutive
Relations
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Torsion

Constitutive
Relations

ric Properties of Plane
Cross Sections

r Geomet

First and Second Moments:

Y

chl 71/79
1.11 Geometric properties of plane cross sections



Geometric Properties of Plane
Cross Sections

Geometric Properties of Plane
Cross Sections

S
hl RHEE
Sy X

Coordinates of Centroid

o

For Centroidal Axes X , ¥

8,=8,=0

annimation '
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Centeroid

|

Geometric Properties of Plane
Cross Sections

First Moments:

o) [ )

Coordinates of Centroid

4

For Centroidal Axes X , ¥

o[ - <I||t S,(:Sy:O
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Geometric Properties of Plane
Cross Sections

Second Moments :
[moments and product of Inertia):

( (
Ix y2 y
x2 | dA

e
-
Il
e

| = polar second moment
P ﬁnoment of inertia)

kl"Y A G/ [
A

Geometric Properties of Plane
Cross Sections

Iy, Iy are radii of [
gyration with L /
respect to x and A

y axes

wyY
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Geometric Properties of Plane
Cross Sections

Effect of Transiation of Coordinates

Translation of Coordinates

X, y are centroidal coordinates

|X I)_C YC

_ 2
L, y={ 1 p+A{ X
I"V I’—Q_’ chc

2 | annimation |

Centeroid

|
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Geometric Properties of Plane
Cross Sections

Rotation of Coordinates:

I, cos’0 sin’0 ~ 2sin0 cosO | [ 1,
I, y=| sin% cos’0 2sin0 coso | { I
o sin0cosd  —sindcosd  cos’D-sin‘0| | Ly
1 1 )
-2-[1 + cos 20' 5(1 ~COS 20] - sin 20

- %(1 — COS 20] %(1 +COS 2{}) sin 20 |

1 1
—sin 20 - — 8in 20 cos 20
. 2
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Geometric Properties of Plane

Cross Sections

Principal Axes:

Iy, are maximum
and minimum
second
moments

e

| animation |

Mohr's Circle Representation of
Moments and Product of Inertia

]_

chl 77/79
1.12 Mohr's circle representation of moments and product of inertia



]' Mohr's Circle Representation of
Moments and Product of Inertia

Mohr's Circle Representation of
Moments and Product of Inertia

]A
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Mohr's Circle Representation of
Moments and Product of Inertia
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